2012 Aircraft Airworthiness & Sustainment (AA&S) Conference Baltimore, MD, April 2-5, 2012

JENTEK Sensors, Inc.

Composite NDT and SHM for Spacecraft and Aircraft, Using MWM-Arrays

Neil Goldfine, Andrew Washabaugh, David Jablonski, Zachary Thomas, and Christopher Martin

> JENTEK Sensors, Inc. 110-1 Clematis Avenue , Waltham MA 02453 Phone: 781-642-9666; Email: jentek@shore.net www.jenteksensors.com

> > April 5, 2012

MWM sensors and MWM-Arrays covered by issued and pending patents, including, but not limited to: 8,050,883; 7,994,781; 7,876,094; 7,812,601; 7,188,532; 7,183,764; 7,161,351; 7,161,350; 7,106,055; 7,095,224; 7,049,811; 6,995,557; 6,992,482; 6,952,095; 6,798,198; 6,784,662; 6,781,387; 6,727,691; 6,657,429; 6,486,673; 6,420,876; 6,380,747; 6,377,039; 6,351,120; 6,198,279; 6,188,218; 6,144,206; 5,966,011; 5,793,206; RE39,206 E.

 Copyright © 2012 JENTEK Sensors All Rights Reserved.

Airworthiness 2012

Goals, Technical Approach and Funding

- **Goal** is to develop:
 - High resolution damage and condition imaging for carbon fiber composite NDT
 - Volumetric stress sensing magnetic stress gages for composites
- The **MWM-Array** is a linear drive eddy current sensor array construct
 - Can induce eddy currents in the linear fibers of carbon fiber composites
 - Use winding geometry changes to alter penetration depth and characterize damage
- Detection/characterization of impact and other damage and monitoring of strain/stress as a function of depth and fiber orientation is accomplished by modeling the fiber properties/orientation/density/contact. Simplified models are being used now with advanced models still under development.

Funding

- NASA for micromechanical model development and application to composite overwrapped pressure vessels (COPVs)
- Army for rotorblade NDT
- **Navy** for NDT of aircraft composites

Linear Drive Eddy Current Sensors

MWM[®] and MWM[®]-Arrays

Parallel Architecture Instruments: GS-Durable and GS-HandHeld

0.25 mm

1 mm

Slide 3

JENTEK Sensors, Inc.

Micromechanical Model: Eddy Current Extension (Model under development in NASA Phase II SBIR)

- Linear drive MWM-Array sensing of composite with conducting fibers and insulating matrix
- Model uses a composite cylinder assemblage
 - Solve for field around a single fiber and extend to fiber bundle
 - Effective complex permeability and conductivity depend upon orientation with respect to fiber axis, fiber density and fiber contact
- Focus on Carbon Fiber/Epoxy composites

Uniaxial/Biaxial Specimens: Orientation Varied

- Single element MWM sensor; 10 MHz
 - Air/shunt calibration
 - Sensor response highly directional
 - Highest response when fibers when sensor drive oriented parallel to fibers

Uniaxial specimens

Copyright © 2012 JENTEK Sensors All Rights Reserved.

Measurement Grids for Simplified Model

Example Grids for the MWM FS35 Sensor and Aluminum

Airworthiness 2012

MWM Sensor Selection

- Magnetic field decays exponentially with distance away from sensor
 - Decay rate determined by skin depth at high freq. and sensor dimensions at low frequency
- High frequencies needed to induce significant eddy currents
- Large dimensions needed for thick composites

Quasi-isotropic Composite Panel Stackup

Stackup for bending test panel

- Uniaxial properties for each layer
- MWM-Array sensitive to composite layers with fibers oriented parallel to drive windings
- Composite layer considered insulating if fibers NOT within 5° of sensor orientation
- This visualization indicates that each sensor orientation is only sensitive to a subset of plies at varying depths within the composite.

JENTEK Sensors, Inc.

Simplified Grids for Quasi-isotropic Stackup

- The plots compare standard infinite half space grid to parameterized grids for each sensor orientation
- Sensitivity to a subset of plies causes a shift in effective property estimates compared to standard grids
- Smaller effective conductivities; effective lift-off can be high, lower, even negative, depending upon orientation

Slide 9

JENTEK Sensors, Inc.

Example COPV Stackup

- Stackup for COPV and COPV ring specimen
- MWM-Array sensitive to composite layers with fibers oriented parallel to drive windings
- This indicates that the sensor orientation is important for assessing the fiber properties.

JENTEK Grids for MWM-Array on COPV Samples

- Representative grids for a composite overwrapped pressure vessel (COPV)
- Models account for layered geometry and orientation effects on properties within each layer

JENTEK Sensors, Inc.

Segmented Field Magnetometry

- Different sensor geometries provide different penetration depths
- Segmented field sensors such as FA41 can provide two depths in a single scan
- Depth of sensitivity variation needed to characterize damage variation with depth
- Frequency variation alone is not sufficient

JENTEK Sensors, Inc.

Approach to Volumetric Imaging

Combination of sensor orientation and geometry can help isolate depth and region of damage: (i) sensor orientation determines plies, (ii) sensor geometry determines depth of sensitivity, (iii) spatial extent of damage determined from

Airworthiness 2012

Volumetric Imaging of Composite Impact Damage

Sample provided courtesy of Lockheed Martin

Representative MWM-Array Scan Image

Slide 14

JENTEK Sensors, Inc.

Representative Quasi-isotropic Panel Scan Images

JENTEK Sensors, Inc.

 Copyright © 2012 JENTEK Sensors All Rights Reserved.

Airworthiness 2012

Summary Image

Individual scans combined together to create composite cross-sectional view

JENTEK Sensors, Inc.

Airworthiness 2012

Cross Sectional Images: Panel 1, Low Impact Level

MWM-Array FA28 Data

Cross Sectional View along X-axis

JENTEK Sensors, Inc.

Cross Sectional Images: Panel 2, Medium Impact Level

MWM-Array FA28 Data

Cross Sectional View along X-axis

JENTEK Sensors, Inc.

Cross Sectional Images: Panel 3, High Impact Level

MWM-Array FA28 Data

Cross Sectional View along X-axis

JENTEK Sensors, Inc.

COPV Testing

See complimentary presentation:

"Continued Development of Meandering Winding Magnetometer (MWM[®]) Eddy Current Sensors for the Health Monitoring, Modeling and Damage Detection of Composite Materials"

Session: IVHM - Structural Health Monitoring for Damage Detection Presentation time: Thursday, April 05, 2012 2:30 PM

Slide 20

JENTEK Sensors, Inc.

Rotation Scan of Vessels AC-5250 S/N:030

MWM-Array Low Freq. Lift-Off Scans on COPV

Lift-Off image shows liner damage; freq. 50.11 kHz

- Sample AC5250-030; 90° Sensor drive orientation
- Higher impact energy results in larger dents in the aluminum liner
- Sensor: MWM-Array FA24

Periodic Response to Woven Plies

- FA28 scanned over a Gr/Ep composite with a coarse woven fabric ply near the surface
- The spatially periodic sensor response is consistent with the woven fabric tow width
 - Distance between peaks ~0.09-in.
 - This corresponds to 11 oscillations/in.
- Power spectrum density plot indicates strong spatial frequency near 11/in.

25

Peak response

near 11 in-1

20

MWM Response to Stress in 4pt Bending

Unidirectional Carbon Fiber Composite

FA28 Tension

Surface-Mounted Sensor Damage Monitoring

Tests run under NAVAIR SBIR at Lockheed Martin Aeronautics, Ft. Worth, TX

JENTEK Sensors, Inc.

Airworthiness 2012

Review: Goals, Technical Approach and Funding

- **Goal** is to develop:
 - High resolution damage and condition imaging for carbon fiber composite NDT
 - Volumetric stress sensing magnetic stress gages for composites
- The **MWM-Array** is a linear drive eddy current sensor array construct
 - Can induce eddy currents in the linear fibers of carbon fiber composites
 - Use winding geometry changes to alter penetration depth and characterize damage
- Detection/characterization of impact and other damage and monitoring of strain/stress as a function of depth and fiber orientation is accomplished by modeling the fiber properties/orientation/density/contact. Simplified models are being used now with advanced models still under development.

Funding

- NASA for micromechanical model development and application to composite overwrapped pressure vessels (COPVs)
- Army for rotorblade NDT
- Navy for NDT of aircraft composites

Questions?

JENTEK Sensors, Inc.

JENTEK[®] Sensors, Inc.

Phone: 781-642-9666 Email: jentek@shore.net Website: www.jenteksensors.com

Copyright © 2012 JENTEK Sensors All Rights Reserved.

Airworthiness 2012